Annual research report

Dongwook Jang

Department of Physics & Astronomy

Rutgers, The State University of New Jersey

Outline

- Introduction to the Fermilab accelerator & CDF detector
- Service work
- Why τ is interesting
- 7 properties
- Monte Carlo Study of τ
- Plan for the next year

The Fermilab accelerator and CDF detector

• Accelerator (Tevatron)

synchrocyclotron collider

4 miles in circumference

 $E_{CM}=2.0~{
m TeV}$ (highest energy in the world)

• CDF (Collider Detector at Fermilab)

detect momentum and energy of particles

identify particles

Tracking: SVXII, ISL, COT

Calorimeter: SHX, ECL, HCL

Muon: CMX, CMU, CMP

Timing: TOF

Figure 1: Fermi National Accelerator Laboratory at Batavia, IL

November 13, 2001

Figure 2: Elevation view of half of CDF detector

Service work

Silicon Visual Inspection

Looking for flaws on silicon chip

Work with techinician

Learned a lot of SVX hardware

Software development for CDF (EventMerge)

What?: Overlay one data to another

Usage: Usually merge minimum biased data onto MC

Purpose: Make MC more realistic

Operation: COT, Muon using TDC information

Work with: Todd Huffman from Oxford

RunI: This project had never been used

Figure 3: Optical inspection for SVX layer 4 ladder

Why τ is interesting

Physics Groups at CDF

Groups: B, Electroweak, QCD, Top, Exotics.

Higgs and SUSY Rutgers group: heavily involved in Exotics to search on

• Interesting channels with τ 's

$$p\bar{p} \to H(W^{\pm}, Z^{0}) \text{ with } H \to \tau\bar{\tau}$$

 $p\bar{p} \to Hb\bar{b} \text{ with } H \to \tau\bar{\tau}$
 $p\bar{p} \to H_{SM} \text{ with } H \to \tau\bar{\tau}$
SUSY partner of τ , $\tilde{\tau}$

au properties

Basic properties

 $Spin: J = \frac{1}{2}$

 $Mass: m_{\tau} = 1.78 GeV$

Mean lifetime : 2.9×10^{-17} s ($c\tau = 87.11 \mu m$)

 $BR(\tau \to e\bar{\nu}_e\nu_\tau) = 17.83\%$

 $BR(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}) = 17.37\%$

 $BR(\tau \to hadrons) = 64.80\%$

 $BR(\tau \rightarrow hadron's 1-prong) = 49.51\%$

 $BR(\tau \rightarrow hadron's 3-prong) = 15.18\%$

au properties

Signatures in detector

Many decay channels

Always carries ν , which contributes missing energy

Similar to jets Hard to identify leptonic channels in detector

So interesting, but difficult.

Figure 5: $Z \rightarrow e^+e^-$ decay candidate, RunII Data sample

Figure 6: di-jet event candidate, RunII Data sample

Figure 7: $Z \to \tau \bar{\tau}$ decay, MC sample generated by Pythia

Figure 8: di- τ decay candidate, Run II Data sample

=30 GeV

Monte Carlo Study of τ

MC sample

fake τ's generated by single particle gun Full simulations of detector response Selection criteria: used that of RunI

• τ finding efficiency

Developed and maintained by Fedor Ratnikov, Rutgers A program, called TauFinderModule to select τ 's

The selection efficiency as a function of P_T All analysis involving τ 's will use this module

Figure 10: tau Chirality +1; efficiency as a function of P_{Γ}

Figure 11: tau Chirality -1; efficiency as a function of P_T

20

Research committee meeting

ficiency as a function of P_T Figure 12: tau Chirality +1 - -1; difference of ef-

• Looking at $Z \to \tau \bar{\tau}$

Interesting $H \to \tau \bar{\tau}$

 $Z \to \tau \bar{\tau}$ has similar signature

Need for banchmarking and background study

Neutrino reconstruction

Using $\not\!E_T$ to reconstruct ν 's four-momentum

Assumption : ν 's go along the direction of τ

$$E_{\nu}^{1}sin\theta_{1}cos\phi_{1} + E_{\nu}^{2}sin\theta_{2}cos\phi_{2} = \cancel{E}_{x}$$

$$E_{\nu}^{1}sin\theta_{1}sin\phi_{1} + E_{\nu}^{2}sin\theta_{2}sin\phi_{2} = E_{y}$$

Plan for the next year

Enhancing and maintaining EventMergeMods

• Continue the study of di-tau events

Figure 14: SM higgs decay channel

Figure 15: SM higgs cross section

